Chronic in vivo multi-circuit neurophysiological recordings in mice.
نویسندگان
چکیده
While genetically modified mice have become a widely accepted tool for modeling the influence of gene function on the manifestation of neurological and psychiatric endophenotypes, only modest headway has been made in characterizing the functional circuit changes that underlie the disruption of complex behavioral processes in various models. This challenge partially arises from the fact that even simple behaviors require the coordination of many neural circuits vastly distributed across multiple brain areas. As such, many independent neurophysiological alterations are likely to yield overlapping circuit disruptions and ultimately lead to the manifestation of similar behavioral deficits. Here we describe the expansion of our neurophysiological recording approach in an effort to quantify neurophysiological activity across many large scale brain circuits simultaneously in freely behaving genetically modified mice. Using this expanded approach we were able to isolate up to 70 single neurons and record local field potential (LFP) activity simultaneously across 11 brain areas. Moreover, we found that these neurophysiological signals remained viable up to 16 months after implantation. Thus, our approach provides a powerful tool that will aid in dissecting the central brain network changes that underlie the complex behavioral deficits displayed by various genetically modified mice.
منابع مشابه
Multi - neuron intracellular recording 1 in vivo via interacting autopatching 2 robots . 3
The activities of groups of neurons in a circuit or brain region are important for 21 neuronal computations that contribute to behaviors and disease states. Traditional extracellular 22 recordings have been powerful and scalable, but much less is known about the intracellular 23 processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of 24 automatically o...
متن کاملMulti-neuron intracellular recording in vivo via interacting autopatching robots
The activities of groups of neurons in a circuit or brain region are important for neuronal computations that contribute to behaviors and disease states. Traditional extracellular recordings have been powerful and scalable, but much less is known about the intracellular processes that lead to spiking activity. We present a robotic system, the multipatcher, capable of automatically obtaining bli...
متن کاملFood restriction increases glutamate receptor-mediated burst firing of dopamine neurons.
Restriction of food intake increases the acquisition of drug abuse behavior and enhances the reinforcing efficacy of those drugs. However, the neurophysiological mechanisms responsible for the interactions between feeding state and drug use are largely unknown. Here we show that chronic mild food restriction increases the burst firing of dopamine neurons in the substantia nigra. Dopamine neuron...
متن کاملChronic multi-electrode neural recording in free-roaming monkeys.
Many behaviors of interest to neurophysiologists are difficult to study under laboratory conditions because such behaviors are often inhibited when an animal is restrained and socially isolated. Even under the best conditions, such behaviors may be sparse enough as to require long duration neural recordings or simultaneous recording of multiple neurons to gather a sufficient amount of data for ...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience methods
دوره 195 1 شماره
صفحات -
تاریخ انتشار 2011